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Abstract

A dynamic model of the vergence eye movement system was developed and simulated using MATLAB/SIMULINK.
The model was based on a dual-mode dynamic model previously written in FORTRAN. It consisted of a fast open-loop
component and a slow closed-loop component. The new model contained several important modifications. For
example, in the fast component, a zero-order hold element replaced the sampler and the target trajectory estimator
in the earlier model to provide more stable and accurate responses. Also, a periodicity detector was added to
automatically detect periodicity in the stimulus waveform. The stored periodic stimulus, with a reduction in latency,
was used to drive the fast component output. Moreover, a connection representing the efference copy signal was
added from the fast component output to the disparity input to provide an accurate estimate of the stimulus
waveform. Further, Robinson’s model of the extraocular muscles replaced the earlier 2nd-order plant to provide more
realistic muscle dynamics. The entire model, containing the fast and slow components, was simulated using a variety
of stimuli such as pulses, positive and negative ramps, square-wave, and sine-wave. The responses showed dynamic
characteristics similar to experimental results. Thus, this new MATLAB/SIMULINK program provides a relatively
easy-to-use, versatile, and powerful simulation environment for investigating the basic as well as clinical aspects of
vergence dynamics. Moreover, the simulation program has general characteristics that can be modified to represent
other oculomotor systems such as the versional and accommodation systems. This provides a framework for future
investigation of dynamic interactions between oculomotor systems. © 1998 Elsevier Science Ireland Ltd.
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1. Introduction

The vergence system responds to change in
depth of a target by oppositely directed rotations
of the two eyes [1,2]. It exhibits a latency of about* Tel.: +1 908 4454137; fax: +1 908 4453653.
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180 ms for convergence and 200 ms for divergence
[3]. Its dynamics are relatively slow compared to
the saccadic eye movement system [4], and has a
time constant of about 180 ms for convergence
and 250 ms for divergence [5]. It is this relatively
slow dynamics, along with its latency, that have
made it difficult to model vergence as a continu-
ous feedback system. Indeed, when open-loop
parameters based on experimental data were input
into a continuous feedback model, it exhibited
instability oscillations [6]. To maintain accuracy
as well as stability, Hung et al. [6] proposed a
dual-mode model for the vergence eye movement
system. It consisted of a fast open-loop compo-
nent and a slow closed-loop component. The fast
component accounted for most of the vergence
response, while the slow component used feed-
back to reduce the small residual disparity to a
minimum. Model simulation responses were
shown to be stable and robust to a variety of
stimuli. A detailed discussion of the model has
been provided by Hung et al. [6].

However, due to the complexity of the model
program, which was originally written in FOR-

TRAN [6], it had been difficult for other re-
searchers to implement the program on their own
computers and to simulate experimental and clini-
cal vergence responses. Recently, more powerful
and versatile software platforms, such as MAT-

LAB/SIMULINK (henceforth, called simply MAT-

LAB), have become widely available, so that a
conversion of the vergence dual-mode model from
FORTRAN to MATLAB appeared worthwhile.
Yet, this was not a simple undertaking because
there were major differences between FORTRAN, a
programming language, and MATLAB, a block-
structured simulation package. Also, the logic
flow could not be easily converted from one to the
other. Hence, the software code needed to be
completely re-written. On the other hand, power-
ful signal analysis programs in MATLAB were
available for improving the performance of the
model.

As described below, the most significant com-
ponent of this MATLAB model is the m-file written
for the fast component, Fast.m. All the important
features, such as stimulus amplitude and velocity
limits, zero-order hold (ZOH), variable latency to

different velocity ramp stimuli, re-triggering by a
rapidly changing stimulus, and auto- and cross-
correlations used for prediction of periodic stim-
uli, are incorporated in Fast.m. This is in turn all
embedded in the block FAST (see Fig. 1). The
block diagram contains the efference copy signal
[7,8] from the output of the fast component that is
summed with the disparity to provide an estimate
of the stimulus. Moreover, the slow component
block, SLOW, contains feedback connections for
closed-loop control of disparity. The outputs of
the FAST and SLOW elements are input to the
convergence/divergence switch and filter, which in
turn drives the extraocular muscle plant [9] to give
the vergence response.

This MATLAB model program provides the flex-
ibility in block and program manipulation, pow-
erful supporting signal analysis routines,
ease-of-use, and robustness that have been lacking
in previous vergence models. Indeed, it can forms
the basis for the investigation of the fundamental
properties of the vergence system under a consis-
tent and coherent framework.

2. Mode of availability

The intent of this effort is to make available
to researchers and clinicians a relatively easy-
to-use program for simulating vergence system
dynamics in the MATLAB environment that is ro-
bust to a variety of stimulus conditions. Pro-
grams can be obtained via requests accompanied
by a 3.5 in. 1.44 MB diskette or by e-mail
(shoane@rci.rutgers.edu).

3. Program description

3.1. O6erall program

The principles of the MATLAB model program
of the vergence eye movement system are based
on the program previously written in FORTRAN

and presented in Hung et al. [6]. It has been
modified and improved upon. For example, a
ZOH element (which holds the input value for
one sampling interval) has been incorporated in
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Fig. 1. Block diagram of the vergence system used in the MATLAB simulations. The difference between vergence stimulus and
response, or vergence error, is input to a deadspace element, which represents Panum’s fusional area. The output of the deadspace
element is summed with the efference copy signal, resulting in a signal equal to the actual stimulus. This signal is used to drive the
fast component. The fast component operates in an open-loop manner, uses a ZOH, and has a predictive capability for periodic
stimuli. The fast component output is input to the convergence/divergence switch and filter, which in turn drives the oculomotor
plant. The output of the plant provides the efference copy signal, which takes into account the effect of the filter and plant. The
output of the deadspace element also drives the slow component. The slow component operates over a smaller range of vergence
error amplitudes and velocities. The output of the slow component is input to the convergence/divergence switch and filter, which
in turn drives the oculomotor plant. The output of the plant is fed back and is subtracted from the vergence stimulus to provide
the error signal to the deadspace element. Thus, the slow component operates under a closed-loop condition. The fast and slow
components operate over different stimulus regimes so that when one is active, the other is disabled. This provides robustness in the
model responses.

the program in place of the sampler and target
trajectory estimator in the original model. Also, it
now automatically detects periodicity in the stim-
ulus and changes to a predictive mode to reduce
the phase lag between stimulus and response. In
addition, the plant has been replaced by
Robinson’s [9] model for extraocular muscles.

The vergence controller consists of a fast and a
slow component. The sum of their outputs pro-
vides the command signal. The fast component
(see FAST block, Fig. 1, and flow chart, Fig. 2A)
is driven by the sum of the error signal (equal to
the output of the disparity signal through the
deadspace operator, limits=90.1° [10], which
represents Panum’s fusional area [11]) and the
efference copy signal from the fast component
output. The efference copy signal takes into ac-
count the effect of plant dynamics. This results in
an open-loop signal that is equal to the original
stimulus amplitude. This open-loop drive is im-
portant because it maintains stability in the pres-
ence of a relatively long latency ($200 ms) and

the requirement of an accurate initial step re-
sponse. Such accuracy corresponds to very high
gain in a feedback control system, which would
have otherwise resulted in instability oscillations.
The fast component open-loop response therefore
accounts for most of the step response amplitude,
with the remainder being taken up by the closed-
loop slow component. The slow component (see
SLOW, Fig. 1; and flow chart, Fig. 2B) operates
over smaller amplitude and velocity ranges and
uses negative feedback to provide the error signal
for the controller. Significantly, the FAST and
SLOW components operate under separate stimu-
lus regimes, so that when one is active the other
component is disabled. This provides robustness
of the vergence response, since there is no cross
interference (other than the residual decay of the
slow component when it is disabled) between the
fast and slow component outputs. Indeed, in test
simulations (not shown) where both fast and slow
components are simultaneously active, the model
exhibits unstable, non-robust, and sometimes
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Fig. 2. Flow charts for the (A) FAST and (B) SLOW elements of the model shown in Fig. 1.
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Table 1
Selected model parameters

Value DescriptionParameter

Athrsh 2500 Acceleration threshold (degrees/s) per degree for trigger of fast component for pulse and step
0.05 or 0.20Pcross Percentage of period for maintenance of periodicity of cross-correlation between stim and resp,

for low and high vel, respectively
0.75 Amplitude threshold (degree) for trigger of fast component for ramp and sinePthrsh

Samptime 0.2–0.5 Sampling interval (s) of ZOH for high to low stimulus velocities, respectively
0 or 1 Global flag for trigger of fast component and disable of slow component, and vice versaTflag
0.25 or 0.45 Threshold for initial detection of peak of autocorrelation, for low and high velocities, respectivelyThrsh1
0.15 or 0.40 Threshold for detection of maintained peak of autocorrelation, for low and high velocities,Thrsh2

respectively
Vthrsh 2.50 Velocity threshold (deg/s) for trigger of fast component for ramp and sine

bizarre responses. The outputs of the fast and
slow components are summed to provide the in-
put to a convergence/divergence switch and filter.
The switching is based on the sign of the velocity.
The output of the switch and filter provides the
command signal that drives the oculomotor plant.
The following describes in detail the Fast.m func-
tion in the FAST block and Slow.m function in
the SLOW block (Fig. 1).

3.2. Detailed description of FAST and SLOW
components

The fast component function, Fast.m, consists
of a ZOH element which responds to changing
stimuli, such as ramps that are above the position
(Pthrsh) and the velocity (Vthrsh) thresholds, or
steps above the acceleration (Athrsh) threshold
(see Table 1 and Fig. 2A). The sampling interval
(Samptime) varies ranging from 0.2–0.5 s for high
and low velocity ramp stimuli, respectively. A
sudden subsequent rapid change in the stimulus,
however, will re-trigger the ZOH. This provides
model responses that are consistent with experi-
mental ramp and square-wave responses. For the
pulse stimulus, a double change in sign of acceler-
ation (to distinguish it from the single change in
sign for a step) within a 200 ms interval will result
in a delayed (200 ms) pulse response that follows
the time course of the pulse stimulus. This pro-
vides model responses that are consistent with the
experimentally observed increase in response pulse
amplitude and duration with increased stimulus

pulse duration. For a sinusoidal stimulus, the fast
component operates in conjunction with the slow
component to provide the sinusoidal response.
Moreover, the latency, which decreases from a
maximum of 0.5 s for slow ramps to a minimum
of 0.2 s for pulse, step, and fast ramps, is embed-
ded in the Fast.m function.

Also within the function, Fast.m, the autocorre-
lation coefficients of the stimulus time course is
calculated at each time step. The autocorrelation
provides a means to quantify the periodicity in a
waveform [12]. If a positive peak value (away
from the zero shift position) is detected (correla-
tion coefficient\Thrsh1), this is considered to
have detected a periodic stimulus, such as a sinu-
soid. The periodic interval is equal to the time
difference from zero shift to the shift at the posi-
tive peak. The stored periodic stimulus pattern,
with a time shift advancement simulating predic-
tion, is then used to drive the ZOH element of the
fast component. The maintenance of periodicity is
checked in two ways. First, the autocorrelation
peak (away from the zero shift position) of the
estimated stimulus timecourse is compared
against a threshold (Thrsh2, which is slightly
lower than that for detection). Second, the cross-
correlation between the stimulus and response is
calculated once every period to determine whether
there is a large phase shift (i.e. whether the central
peak is deviated from the center by a threshold
amount by Pcross percent of the period). If the
threshold is exceeded in either of the above condi-
tions, the periodicity is considered to have been



G.K. Hung / Computer Methods and Programs in Biomedicine 55 (1998) 59–6864

lost. If such a subsequent loss of periodicity is
detected, the operation mode is reverted back to
normal and is ready to detect any subsequent
periodicity.

The slow component function, Slow.m, re-
sponds to changing stimuli below the position
(Pthrsh) and velocity (Vthrsh) thresholds (see
Table 1 and Fig. 2B). These include slow ramps,
low frequency sinusoids, and the approximately
level position at the end of step responses. The
slow component latency=0.20 s, gain=30, and
1st-order element time constant=10 s [13]. The
slow component uses negative feedback to fine-
tune the response. This simulates the experimen-
tally observed fusional process [1]. The fast and
slow component functions, Fast.m and Slow.m,
communicate via the global parameter Tflag.
When Tflag=1, the fast component is active and
the slow component is disabled. On the other
hand, when Tflag=0, the opposite condition
holds.

Thus, the fast and slow components are placed
in parallel in the forward loop, with each operat-
ing over a range of stimulus amplitudes and veloc-
ities. The fast and slow component outputs are
summed to provide the signal to the convergence/
divergence switch and 1st-order filter (time con-
stant=0.07 s for convergence and 0.15 s to
divergence; note that these element are input to
the plant to provide the overall dynamics), whose
output provides the command signal that drives
the oculomotor plant [9]. The plant output serves
as the efference copy signal which is fed back and
summed with the error signal to provide the input
to the fast component. The signal from the plant,
rather than the fast component output, is used
because it provides a more accurate value for the
fast component output. This is appropriate since
only one component (fast or slow) is active at a
time, and little or no inappropriate slow compo-
nent residual signal is present in the efference
copy signal. For the slow component, its output is
fed back as a negative feedback signal and com-
bined with the stimulus to result in the error
signal that serves as the input to the slow compo-
nent.

4. Implementation

Simulations were performed on an 486-PC with
8 MB RAM operating at 66 MHz, Windows 3.10,
MATLAB 4.2c, and SIMULINK 1.3c. Stimulus func-
tions that were not available in Blocklib.m of
SIMULINK, such as pulses, ramp-stop, and square-
wave (above zero level), were written as m-files
and called by s-function blocks.

5. Model simulation procedure

Simulations were performed for various
parameter values for pulse, ramp, square- and
sine-wave stimuli. In the initial simulation pro-
cess, the parameters were first set at approxi-
mately the middle of the range of possible values
(e.g. threshold ranges found experimentally [6,14])
to provide initial simulation responses. Then, the
parameters were fine-tuned to provide appropriate
responses to all the different stimulus conditions
used. Following the simulations, the results were
plotted on a Laserjet4 printer.

6. Simulation results

The model simulation results exhibited behav-
ior that was similar to that found experimentally
[6,15]. Pulse responses showed an increase in am-
plitude and duration with increased pulse dura-
tion (Fig. 3). The slow component played a
relatively greater role for the shorter (0.02 and
0.04 s) rather than the longer duration pulses.
This was because the slow component operated
over smaller disparity amplitude and velocity
ranges. For the longer duration stimuli, the fast
component provided the primary contribution to
the up and down steps in the pulse response. The
ramp responses showed transitions from smooth
tracking by the slow component for slower ramps
(1 and 2°/s), to staircase steps by the fast compo-
nent for intermediate velocity ramps (3, 5 and
10°/s), and single steps by the fast component for
higher velocity ramp and step stimuli. This held
true for both positive (Fig. 4) and negative (Fig.
5) ramps, with convergence exhibiting faster dy-
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Fig. 3. Model responses to pulse stimuli (duration in s shown
at right of traces) of 4° amplitude.

Fig. 5. Model responses to negative (divergent) ramp stimuli
(velocity in degrees/s shown at right of traces) with minimum
amplitude of −4° s. Responses show a similar trend as that
for positive ramp stimuli (see Fig. 4). - - -, stimulus; ——,
response.

namics than divergence responses. Note also that
there was a gradual decrease in latency with in-
creasing ramp velocity, which was consistent with
experimental results [6,15]. Square-wave responses
showed a transition from a non-predictive mode

for the low frequency stimulus (0.25 Hz) to a
predictive mode for higher frequency stimuli (0.50
and 0.75 Hz) (Fig. 6). For the low frequency
square-wave, the latencies for the convergent and
divergent responses remained the same for the
repeated square-wave stimulus. However, for the

Fig. 4. Model responses to positive (convergent) ramp stimuli
(velocity in degrees/s shown at right of traces) with maximum
amplitude of 4°. - - -, stimulus; ——, response.

Fig. 6. Model responses to square-wave stimulation (frequency
in Hz shown at right of traces) of 4° amplitude. - - -, stimulus;
——, response.
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Fig. 7. Model responses to sine-wave stimulation (frequency in
Hz shown at right of traces) for 92° peak-to-peak amplitude.
- - -, stimulus; ——, response.

7. Discussion

The time required for the simulations was
found to be about 40 s of real time per s of model
simulated time. This relatively long computation
time was due to the complex checks that were
involved in the Fast.m function (see Section 3.2).
This included the shifting and storage of stimulus
and response waveforms at each time step (0.02
s), autocorrelation of the stimulus waveform at
each time step, cross-correlation between stimulus
and response after one period, and checking for
the peaks in these functions. With newer PC’s or
other computers operating at 200 MHz or more,
the actual time for the simulations could be re-
duced by a factor of at least three. In contrast,
such software steps for correlations and predictive
responses have their analogs in the neural net-
works of the higher brain centers in humans [18]
that provide rapid responses to periodic stimuli in
everyday life.

The model parameters were tested and fine-
tuned to give good overall performance under
different stimulus conditions. Hence, they repre-
sented compromise values that gave consistent
performance across the different conditions. In-
deed, simulation of the model showed results that
were very similar to experimental data for differ-
ent stimuli under a variety of conditions [6,15].
This provided a relatively comprehensive check
on the accuracy and robustness of the model. The
most complex part of the model was the Fast.m
function used to drive the fast component in the
model. It consisted of amplitude and velocity
thresholds, ZOH, auto- and cross-correlation
analyses, and predictive response. It was designed
to be a general sampled data and predictive pro-
gram, where the values of the particular parame-
ters determine the dynamic characteristics of the
responses. Hence, modification of the parameters
could allow the program to be used for simulating
other oculomotor systems.

There were several important assumptions in
the model. The fast component was assumed to
behave as a ZOH element. This provided the
multiple step responses to intermediate velocity
ramps seen experimentally. Each of these steps
have been shown to fall on the main sequence for

higher frequency square-waves, after about 2 cy-
cles, the predictive mode came into effect, result-
ing in a reduction in latency so that the
response approximately coincided with the on-
or offset of the stimulus. The lack of prediction
for the low frequency stimulus was because the
period of the stimulus was at the limit of the
memory length allotted for the predictive mode.
Sine-wave responses showed a transition from
smooth tracking by the slow component for
lower frequency stimuli (0.1 and 0.2 Hz) to
combined fast and slow component responses
for higher frequency stimuli (above 0.2 Hz) (Fig.
7). Also, there was a transition from a non-pre-
dictive mode for the lower frequency stimuli to
a predictive mode for the higher frequency stim-
uli. As in the square-wave responses, after about
2 cycles, the predictive mode came into effect
and there was a reduction in latency in the sine-
wave responses. All the above simulation re-
sponses were consistent with experimental results
[5,6,15–17].
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vergence steps [5,15]. Without such an element, an
oscillatory (i.e. sinewave-like) ramp response
would not resemble the experimental data, and
significantly, individual movements would not fall
on the main sequence. Although Rashbass and
Westheimer [1] termed their responses to ramp
stimuli ‘oscillations’, these have been shown to be
multiple-step responses [15]. Another assumption
was that the efference copy signal contained the
plant dynamics following the output of the fast
component. Such a process may occur in the
brain by means of a neural network trained to
represent the overall dynamics of the eye move-
ment [19]. This would provide an appropriate
representation of the eye movement response,
which when summed with the disparity signal,
gave an accurate representation of the stimulus.
The third major assumption was that when the
fast component was active, the slow component
was disabled, and vice versa. This distinct tempo-
ral separation of fast and slow component control
was critical in that it permitted reasonable and
robust estimation of the parameters. Otherwise, if
both fast and slow components were simulta-
neously active, with one being open-loop and the
other closed-loop, unknown and unusual be-
haviour often occurred, with an inability to con-
trol system performance as parameters were
varied. The separation of the fast and slow com-
ponent was consistent with neurophysiological re-
sults in monkeys showing near and far cells that
respond maximally to targets 1° or more either in
front of or behind the fixation plane, and tuned
excitatory and inhibitory cells that respond maxi-
mally to targets near the fixation plane [20]. These
corresponded to stimulus conditions for driving
the fast and slow components, respectively. Fi-
nally, it was assumed that the peak (away from
the zero shift position) of the autocorrelation
function for the estimated stimulus time course
could be used to assess periodicity [12]. This sig-
nal processing procedure was reasonable since the
peak was relatively independent of the shape of
the waveform, but was dependent on its periodic-
ity. Also, the height of the peak gave a measure of
the accuracy of the estimated period.

The saccadic eye movement system has been
shown to exhibit sampled data behavior [12], and

the pursuit system has been shown to exhibit
prediction [12,21]. Also, the accommodative sys-
tem has been shown to exhibit sampling proper-
ties [22]. As indicated above, since the Fast.m
function for the vergence system contains sam-
pling and prediction, it could be modified to
reflect the characteristics of the versional and
accommodation systems.

The new MATLAB model of the vergence eye
movement system has significant improvements
over the previous FORTRAN program model. The
block diagram environment can implement more
easily some important features such as deadspace
operator, efference copy, slow component feed-
back, and plant dynamics. The m-file structure
and the SIMULINK signal analysis programs allows
for stable and robust implementation of complex
functions such as ZOH, auto- and cross-correla-
tion, and prediction. Also, modifications for
checking and testing the model is more easily
performed by simply modifying the m-file
parameters and block connections. Moreover, the
MATLAB platform is easily transportable from one
system to another. The SIMULINK block diagram
environment provides ease of use in generating
stimuli, modifying connections, and displaying
and recording simulated data. Thus, this program
gives the researcher and clinician a relatively sim-
ple, yet powerful and versatile, tool for investigat-
ing the dynamic behavior of the vergence eye
movement system.

One of the long-term goals in the development
of the model is to construct a combined dynamic
model of the accommodation and vergence sys-
tems in a MATLAB environment. At present, no
comparable accommodation model is available.
When such a combined model is constructed, it
will provide a comprehensive overall model that
can describe the dynamic behavior of the near
response under a variety of blur and disparity cue
conditions. Also, parameter variations in the
model can be used in the diagnosis of clinical
deficits by simulating the dynamic characteristics
in amblyopia, strabismus, and near-work symp-
toms [23]. The other long-term goal is to construct
a combined dynamic model of the versional (sac-
cade plus pursuit) and vergence system. Some
existing models will serve as the basis for the
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development of this comprehensive model [24–
26]. This will be used to quantify the responses to
asymmetrical target displacements in space and to
investigate some fundamental properties of the
interactions between neurological control systems.
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